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We argue for the existence of a liquid ground state in a class of square lattice models of orbitally degenerate
insulators. Starting with the SU�4�-symmetric Kugel-Khomskii model, we utilize a Majorana Fermion repre-
sentation of spin-orbital operators to access unusual phases. Variational wave functions of candidate liquid
phases are thus obtained, whose properties are evaluated using variational Monte Carlo. These states are
disordered and are found to have excellent energetics and ground state overlap ��40%� when compared with
exact diagonalization on 16-site clusters. We conclude that these are spin-orbital liquid ground states with
emergent nodal fermions and Z2 gauge fields. Connections to spin-3/2 cold-atom systems and properties in the
absence of SU�4� symmetry are briefly discussed.
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I. INTRODUCTION

In correlated insulators, the degrees of freedom that re-
main at low energies are spin and orbital degeneracy. At low
temperatures one usually obtains an ordered state described
essentially by a classical variable, the Landau order param-
eter. Ground states that are not described by the Landau
framework are expected to possess strikingly different prop-
erties. While they are known to occur in one-dimensional
�1D� systems, an important question is whether they arise in
bulk two-dimensional �2D� and three-dimensional materials.
Theoretical studies have largely focused on quantum spin
systems. While model Hamiltonians for spin liquids exist,
one needs special conditions such as strong frustration to
ensure that the spins do not order. Otherwise, even for spin-
1/2 quantum fluctuations are not typically strong enough to
destroy order. On the other hand, orbital degeneracy in insu-
lators can enhance quantum fluctuations,1–3 destroying order
and possibly lead to a spin-orbital liquid state. An experi-
mental illustration is provided by the insulating spinels
MnSc2S4 and FeSc2S4. The former, a pure S=5 /2 system,
magnetically orders below 2 K. The latter, a spin S=2 sys-
tem, is identical in most respects except that it involves a
twofold orbital degeneracy. In contrast to the spin system, it
is found to remain spin disordered down to the lowest tem-
peratures of 30 mK.4

Here, we theoretically study a simple spin-1/2 square lat-
tice model with the minimal twofold orbital degeneracy.
Such a spin-orbital Hilbert space is realized, e.g., with the
d3z2−r2 and dx2−y2 orbitals of Ag2+, Cu2+, or �low spin� Ni3+ in
an octahedral environment. We focus on a model that cap-
tures the effect of enhanced quantum fluctuations from or-
bital degeneracy and argue for a liquid ground state in this
case. We give theoretical arguments for the stability of this
phase as well as well as a numerical Monte Carlo study of a
variational wave function. The latter is found to have ex-
tremely good energetics for our Hamiltonian and allows us to
characterize this phase beyond the simple fact that it is dis-
ordered. The low-energy collective excitations of the liquid
state are captured by an emergent Z2 gauge field, coupled to
Dirac-type fermionic excitations with fractional spin and or-

bital quantum numbers. The ground-state wave function is
strongly entangled and can be thought of as a product of
three Slater-determinant wave functions.

Realistic spin-orbital Hamiltonians tend to be rather com-
plicated with several exchange couplings that are strongly
direction dependent. Moreover, a linear coupling between the
orbital degrees of freedom and the Jahn-Teller phonons can
quench coherent orbital dynamics. However, for sufficiently
strong exchange interactions, the coupling to phonons can be
ignored and the orbitals can be taken to be quantum degrees
of freedom. Since we are interested here in the general ef-
fects of enhanced quantum fluctuations from orbital degen-
eracy, we follow3 and others in considering a model that
treats all four states on a site symmetrically, i.e., the SU�4�-
symmetric spin-orbital model. This will allow for compari-
sons and is a useful starting point. We show later that our
essential conclusions are unchanged on perturbing away
from this high-symmetry point.

The high-symmetry SU�4� model may, in fact, have a di-
rect physical realization. We point out that a model of eg
orbitals on certain high-symmetry lattices, such as the dia-
mond lattice, can have spin-orbital Hamiltonian that are
nearly SU�4� symmetric. A different setting for this physics
has been opened up by the recent experimental developments
on the trapping and cooling of alkaline-earth atoms. Confin-
ing these to the sites of an optical lattice leads to SU�N�-
symmetric magnetic models. The nuclear spin here provides
the N flavors, and, given the weak dependence of scattering
lengths on nuclear spin, leads to SU�N�-symmetric exchange
interactions, which, for fermionic atoms, will be
antiferromagnetic.5 Fermionic alkaline-earthlike atoms of
173Yb have been cooled to quantum degeneracy6 while the
Mott state of the bosonic 174Yb has been recently realized.7

A different realization may be provided by spin-3/2 cold at-
oms such as 132Cs confined to the sites of an optical lattice.
At unit filling, one has four states per site and although the
physical symmetry is only that of spin rotations, the small
difference in scattering lengths imply only a weak breaking
of SU�4� symmetry. It was pointed out in Ref. 8 that even
including these differences only breaks the symmetry down
to SO�5��Z2 in the low-energy limit.
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II. MODEL

We study the SU�4�-symmetric Kugel-Khomskii model9,10

on the square lattice,

H =
J

4�
�ij�

�s�i · s� j + 1����i · �� j + 1� , �1�

where s� are the spin-1/2 Pauli matrices and �� are the Pauli
matrices acting on the two degenerate orbital states. We con-
sider the antiferromagnetic�AFM� case �J�0� and set J=1
hereafter. The high symmetry of this model implies that the
three spin operators s�, three orbital operators ��, and nine
spin-orbital operators �a�b all appear with equal weight.
These are 15 generators of SU�4�. It should be noted that
symmetry does not uniquely define a model, one also needs
to specify the representation of the symmetry group appear-
ing at each site. Here the fundamental representation appears
and an SU�4� singlet can only be formed between four sites.

The model �Eq. �1�� was numerically studied in Ref. 3
using exact diagonalization �the model suffers from a sign
problem in the spin-orbital basis� on system sizes of up to
4�4. The ground state �E=−17.4� is an SU�4� singlets at
zero wave vector. Simple trial states such as with spin-orbital
order, or a box singlet state, have much higher average en-
ergy �E=0 and E=−12, respectively� pointing to the impor-
tance of quantum fluctuations. This motivates the study of
spin-orbital liquids as candidate ground states.

The idea of resonating valence bonds,11,12 provides an in-
tuitive picture of the quantum spin liquid. A more formal
approach that is easier to generalize is the slave particle for-
malism, where the spin is decomposed into “partons,” e.g.,
s�r=��,��a�r

† �� a��r, where the �� are the Pauli matrices and
�a↑r

† ,a↓r
† � creates a boson �Schwinger boson� or fermion with

spin �↑ ,↓� at site r, and the constraint ��a�r
† a�r=1 is im-

posed at every site. One then makes a mean-field decompo-
sition to obtain a quadratic Hamiltonian and the constraint is
then imposed by projecting the wave function to obtain a
variational ground state. The state so obtained is a candidate
spin-liquid wave function. This procedure can be generalized
in a straightforward way to the spin-orbital Hilbert space at
hand, by introducing a four-component a� and the constraint
above at every site.13,14 The physical spin and orbital opera-
tors are again bilinears of a�. However, there are some draw-
backs to this straightforward generalization. The bosonic par-
ton representation cannot treat the SU�4�-symmetric point
while the fermionic parton theories necessarily lead to
Fermi-surface states which can be hard to stabilize as ground
states.

Below, we will sidestep these difficulties by showing that
this problem admits a third, physically distinct, parton repre-
sentation in terms of Majorana Fermions. This representa-
tion, which has not previously been applied to two-
dimensional systems, offers us many advantages. Besides
being more economical �in terms of expanding the Hilbert
space in the minimal fashion�, it leads to liquid states with a
Z2 gauge group, whose low-energy physics is well under-
stood and know to exist as stable phases. We emphasize here
that the projected wave function obtained from this Majorana

parton representation of the SU�4� model is distinct from the
“Schwinger” fermion representation, involving four fermi-
onic a� operators.

III. MAJORANA PARTON FORMULATION

We first point out the group isomorphism SU�4��SO�6�.
The 15 generators of the latter are six-dimensional
antisymmetric real matrices L��

A , where A=1, . . . ,15 and �,
�=1, . . . ,6. An operator representation of this algebra is ob-
tained by introducing six Majorana fermions ��1 , . . . ,�6�
which satisfy the anticommutation relations 	�� ,��
=2	��.

The operators ÔA= 1
4L��

A ����, where summation over re-
peated indices is assumed, reproduce the commutation rela-
tions for SO�6� generators. The Majorana Fermions trans-
form as SO�6� vectors.

We now use the group isomorphism to obtain a represen-
tation of the spin-orbital operators, in terms of Majorana fer-
mions. It is helpful to write the set of Majorana fermions as
a pair of three-component vectors �
�r ,�� r�, where, e.g.,

�r= �
1r ,
2r ,
3r� and we have introduced site indices r. The
spin and orbital operators can then be written in the compact
form

s�r = −
i

2
�� r � �� r, ��r = −

i

2

�r � 
�r �2�

and sr
��r

�=−i��r
�r, which automatically obey the expected
algebra. Note, the sign of the Majorana fermion operators
can be changed without affecting the physical operators. This
Z2 redundancy is connected to the fact that the Hilbert space
is now enlarged—since each Majorana fermion corresponds
to �2 degrees of freedom, we have ��2�6=8 states whereas
there are only four physical states per site. The excess states
can be removed by implementing a Z2 constraint at each site;
first define the operator �r commutes with the physical
operators �which are fermion bilinears� and is idempotent
�r

2=1,

�r � i
1r
2r
3r�1r�2r�3r,

�r = 1, ∀ r . �3�

Hence implementing the constraint in Eq. �3�, restricts us to
the physical Hilbert space. This operator generates the Z2
gauge transformation on the Majorana fermions 
�r→−
�r
and ��r→−��r.

The model in Eq. �1� can be written in these variables as

H = �
�jk�

�1 − �1/8��i�� j · �� k + i
� j · 
�k�2� . �4�

When supplemented by the constraint �Eq. �3��, this is an
exact rewriting of the model. Here, the SO�6� symmetry of
the model is explicit. The quartic nature of the Hamiltonian
requires an approximation. We begin with a mean-field treat-
ment and use it to generate variational states in which the
constraint is treated exactly.

In the context of models with only spin 1/2 �and no orbital
degrees of freedom� we note that a representation utilizing
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three Majorana fermions per site, where the spin operator s�r
is given by an expression identical to that in Eq. �2�, has
been studied.15 However, we point out that this is distinct
from our current formalism since a single-site constraint can-
not be applied to generate the physical Hilbert space. Never-
theless, this provides an alternate parton approach—for ex-
ample, with an even number of sites, one can view half of
the spins as “orbital pseudospins,” then the spin problem will
be artificially converted to a spin-orbital problem, �although
without SU�4� symmetry�. Then the gauge fixing and con-
struction of complex fermions and variational wave func-
tions can be proceeded in the same fashion as in this paper.
But this artificial discrimination of spin and orbital pseu-
dospin usually will superficially break lattice symmetry. An-
other way to construct a Hilbert space for the spin 1/2 only
model is to introduce a fourth Majorana fermion on every
site and the set of four fermions satisfies a product constraint
as in Eq. �3�.16 This has the benefit of being formulated with
a unique single-site constraint. However, unfortunately it
turns out that these four fermions are just the real and imagi-
nary parts of the two Schwinger fermion operators and do
not lead to a new representation. The constraint is the famil-
iar one of requiring single occupancy of the Schwinger fer-
mions.

Mean-Field Theory and Gutzwiller Projection. With real
mean-field parameters � jk�=−�kj�, we have

HMF = �
�jk�

�1 − �i� jk/4���� j · �� k + 
� j · 
�k� + � jk
2 /8� . �5�

In self consistent mean-field theory � jk= i���� j ·�� k+
� j ·
�k��MF.
For convenience we combine the six Majorana fermions into
three complex fermions: c�r

† = �1 /2����r+ i
�r� which are
more intuitive although the SO�6� symmetry is no longer
explicit. The constraint then is �a=1

3 c�r
† c�r=0 or 2 �while the

odd values of the site occupation are forbidden�. Writing c�r

= �c1r ,c2r ,c3r�, we have i��� j ·�� k+
� j ·
�k�=2i�c� j
† ·c�k−c�k

† ·c� j�,
i.e., the mean-field theory simply involves fermions hopping
with pure imaginary amplitudes. Such a band structure is
automatically particle-hole symmetric, which leads to half-
filled bands for each of the cra fermions. Note, despite the
imaginary hoppings the mean-field ansatz is time-reversal
symmetric if the hopping is bipartite. The mean-field wave
function is simply a product of three identical Slater deter-
minants. While the specific Slater determinant depends on
the mean-field ansatz, we make a few general observations

below. If we consider a system with 4N sites, required to
obtain an SU�4�-singlet state, each Slater determinant  is a
function of 2N particle coordinates, corresponding to half
filling. Gutzwiller projecting the mean-field state into the
constrained Hilbert space, yields a physical spin-orbital wave
function. In the fermion representation, a site can either have
no fermions �denoted by �0��, or two fermions, in which case
there are three states, �X�=c2

†c3
†�0�, �Y�=c3

†c1
†�0�, and

�Z�=c1
†c2

†�0�. These are related to the spin-orbital basis states
via

��z = � 1,�z = � 1� = ��0� � i�X��/�2,

��z = � 1,�z = � 1� = ��Y� � i�Z��/�2.

Given a configuration specified by the locations of the �X�,
�Y�, and �Z� states �at sites 	xi
, 	yj
, and 	zm
, respectively,
where xi, yj, and zm are 3N distinct positions�, the spin-
orbital wave function assigns an amplitude ��	xi
 , 	yi
 , 	zi
�
to it. Note, the locations of the �0� states are automatically
specified. For an SU�4� singlet we need equal numbers, N, of
the four types of sites so 	xi
= 	x1 , . . . ,xN
, etc. After the
Gutzwiller projection we obtain

��	xi
,	yj
,	zm
� = �	yj
,	zm
� · �	zm
,	xi
� · �	xi
,	yj
� .

�6�

Thus the projected spin-orbital wave function is a product of
three Slater determinants with a lot of entanglement. We now
apply this formalism to specific models.

IV. ONE-DIMENSIONAL CHAIN

This SU�4�-symmetric nearest-neighbor model in 1D is
very well understood and serves as a benchmark for our tech-
nique. The only symmetric mean-field ansatz is a uniform
�r,r+1=�, leading to a dispersion ��k�=� sin�k�. We construct
the resulting projected wave function for L site chain with
L=8,16. . .128 and antiperiodic boundary conditions, and
evaluate its properties using variational Monte Carlo. The
energy per site from the projected wave functions extrapo-
lated to the thermodynamic limit is −0.8233, not far from the
exact result,17 1− �1 /2�0

1 x−3/4−1
1−x dx=−0.8251. The leading

term in the asymptotic spin-correlation function is
cos��r /2� /r1.5, consistent with theoretical and numerical
predictions.18–20 Note, these desireable properties of the
wave function only arise after projection. �see TABLE I�.

TABLE I. Results of the projected wave function for L-site chain with antiperiodic boundary condition.
The second row shows energy per site for the projected wave function. The third row shows the L−1.5 scaling
of sz-correlation functions �sz�x� is sz at position x�.

L 8 16 32 48 64

�H� /L −0.8642 −0.8332 −0.8256 −0.8242 −0.8237

�sz�0�sz�L /2��L1.5 1.66 1.82 1.90 1.92 1.96

L 80 96 112 128

�H� /L −0.8235 −0.8234 −0.8233 −0.8233

�sz�0�sz�L /2��L1.5 1.98 1.94 1.97 1.97
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Interestingly, the � /2 wave vector of the dominant corre-
lations do not correspond to a natural wave vector of the
mean-field dispersion and arises entirely from projection. In
contrast, this wave vector is easier to understand on project-
ing a quarter-filled band, which arises in the standard fermi-
onic representation of spin-orbital operators a�. Remarkably,
one can show that the projected wave functions arising from
this representation and the Majorana fermion representation
discussed above, are identical in one dimension. We stress
that this is a special feature of one dimension and in higher
dimensions, the two will lead to physically distinct states.
Details of the proof can be found in Appendix A.

V. SQUARE LATTICE

The mean-field states on the square lattice can be distin-
guished by the gauge-invariant flux through the elementary
plaquettes, e.g., � jk�k���m�mj for the plaquette jk�m. Trans-
lation and time-reversal symmetry dictates that this flux must
be uniform and can be either 0 or �. This leads to two dis-
tinct mean-field states the uniform and �-flux state ansatz.
The uniform states ansatz is �r�,r�+x̂=�r�,r�+ŷ =�, where
r�= �x ,y� is the position of lattice sites. The mean-field dis-
persion is ��k��=��sin�kx�+sin�ky�� for all the three flavors
and has a square Fermi surface. However, the uniform ansatz
state has higher energy than the �-flux ansatz both in mean-
field theory and after projection so we focus on the �-flux
ansatz.

The �-flux ansatz is �−1�y�r�,r�+x̂=�r�,r�+ŷ =�, as shown in
Fig. 1. The unit cell in mean-field theory is doubled, with u
and v sublattices as shown.

After a Fourier transform, the mean-field Hamiltonian �5�
is

HMF = �2 + �2/4�L2 + ��
a,k�

�c�,k�,u
† c�,k�,v

† ��sin kx sin ky

sin ky − sin kx
�

��c�,k�,u

c�,k�,v
� ,

where the sum over k� is over the L2 /2 �for L�L lattice� k
points in the reduced �0�kx�2� ,0�ky ��� Brillouin zone
and a= 	1,2 ,3
. The above result can be further diagonalized
by a Bogoliubov transformation and produce the two
branches of the mean-field dispersion ���k��
= ���sin2 kx+sin2 ky. This dispersion has two Dirac nodes
at k� = �0,0� and �� ,0�, with isotropic dispersion in their vi-

cinity. Including flavor indices, we thus have six two-
component Dirac fermions.

We use antiperiodic boundary conditions in both direc-
tions for L�L lattices�L even� lattices. The k points are then
kx= �2n+1�� /L, n=0. . .L−1; ky = �2m+1�� /L, and
m=0. . .L /2−1, which avoids zero energy modes. Filling the
negative-energy states gives us a Slater-determinant mean-
field wave function for each of the three fermion species.
The Gutzwiller projected wave function is then easily written
down as Eq. �6�, in terms of this Slater determinant. Evalu-
ating its properties however requires a numerical variational
�determinantal� Monte Carlo approach.21,22 We generate a
random initial basis state having significant overlap with the
mean-field wave function. Random pairs of sites are selected
and updated with the Metropolis rejection rule. 100 00 “ther-
malization” sweeps�L2 pairwise updates� are performed be-
fore measurements of physical quantities. Measurements are
done in 100 000 sweeps. The entire process is repeated ten
times to ensure stability of results.

Energetics. The energy from the projected wave function
is listed in TABLE II for L up to 20. We notice that for the
4�4 lattice our total energy −16.57J is close to the ground-
state energy −17.35J obtained in the exact diagonalization
study.3 More importantly, our energy lies below the first-
excited-state energy −16J obtained in that study, which al-
ready implies a significant overlap ��42%� between our
wave function and the exact ground-state wave function.
Note, our “variational” wave function has no variational
parameter—which makes this agreement more remarkable,
especially given that there are 24 024 SU�4�-singlet states
already at this system size.3

We have checked several other simple states on this
4�4 lattice, they all show much higher energy, compared to
the first-excited state in the exact spectrum. The comparison
is shown in TABLE III.

Wave-function properties. We now provide evidence that
the resulting wave function is a spin-orbital liquid. First, we

uu u u u

v v v v v

u u u u u

FIG. 1. The �-flux ansatz on the square lattice. An arrow from
site j to k means � jk�0. Dashed lines enclose the doubled unit cell,
with two sites u and v.

TABLE II. Results of the projected wave function on a L�L
square lattice with �-flux ansatz under antiperiodic boundary con-
ditions in both directions. The second column shows energy per
site. QBox in the third column and its relation to box order is defined
in main text. The fourth column shows L−4 scaling of spin-
correlation function when L is not a multiple of four �sz�x ,y� is sz at
position �x ,y��. Some entries are empty because the numerical er-
rors are too large.

L �H� /L2 QBox /L2 −�sz�0,0�sz�L /2,0��L4

4 −1.0357�4� 2.0 11.14�2�
6 −0.9238�3� 1.7 20.46�5�
8 −0.9051�2� 1.7 0.0�1�
10 −0.8995�2� 1.6 20.1�2�
12 −0.8974�2� 1.6 2.7�4�
14 −0.8966�1� 1.6 18.1�4�
16 −0.8961�1� 1.6

20 −0.8956�1� 1.6

24 −0.8955�1�
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would like to establish that it has no conventional order, to
clearly show it is not a conventional state. Next, the specific
type of liquid state being proposed—with emergent Dirac
fermions and Z2 gauge fluxes—needs to be established.

We first check for spin-orbital order. Given the SU�4�
symmetry, it is sufficient to compute the sz correlations
which are found to be rapidly decaying in space. The struc-
ture factor for various lattice size was computed, e.g., Fig. 2
shows the result for the L=20 lattice. A broad maximum at
�� ,�� is seen but no Bragg peak develops. We thus exclude
magnetic-orbital ordering.

A more likely order is an SU�4�-singlet state that breaks
lattice symmetry. This is the analog of the valence-bond solid
order for SU�2� magnets. However, SU�4� singlets require at
least four sites so box crystalline orders may arise. Two such
natural orders were proposed by Li et al.10 In both, the SU�4�
singlets are formed on 1/4 of the elementary plaquettes but
these are either arranged in a square lattice or in a body-
centered rectangular lattice with aspect ratio 2. Both box
orders have bond energies modulated at the wave vectors
�� ,0� or �� ,� /2�. We first check if our wave function has
these correlations by defining Ex,k� =�r�e

ik�·r��sz�z�r� · �sz�z�r�+x̂.
Then QBox= �Ex,k�=��,0�

2 � for a L�L lattice should scale as L4,
if long-range order is present. For example, for the perfect
square box state which is a product state of SU�4� singlets,
QBox=L4 /36+ �13 /9�L2. In the absence of order however,

this quantity will scale as L2. For L�20 we did not observe
L4 scaling but rather good L2 scaling, as shown in column 3
of TABLE II indicating no sign or box order upto 400-site
systems. An independent check is provided by modulating
the mean-field parameters � jk to realize the box orders. The
average energy of the projected state is then compared
against the unmodulated wave function. We find that the en-
ergy always increases, for both kinds of orders, pointing to
the stability of the unmodulated state. Within mean-field
theory alone, however, the state is locally unstable to box
modulation.24 The more reliable projected energy study how-
ever point to the opposite conclusion.

Motivated by a recent proposal of chiral SU�N� states in
large-N limit,5 we also consider a chiral state on the square
lattice. We add to the �-flux state pure imaginary hopping of
fermions on the diagonal bonds in such a way that each
triangle has +� /2 flux. This is a particular mass term of the
Dirac fermions and it opens a gap in the mean-field disper-
sion, similar to the box order mentioned above. Indeed the
mean-field energy decreases with the diagonal hoppings.
However after projection the energy always increase after
adding this term, indicating stability against this chiral order.
This distinction between mean-field and projected mean-field
energetics has been observed in other projected wave-
function studies as well.25

We expect the spin-orbital liquid to be a nodal Z2 state,
i.e., it contains emergent Z2 gauge fields and nodal Dirac
fermions that behave like free particles at low energies. Es-
tablishing this directly is more challenging—it is well known
that observing the Z2 topological order of projected wave
functions in the presence of gapless gauge-charged fermions
is tricky26 and left to future work. Free nodal fermions would
lead to spin and orbital correlations that decay as 1 /r4, which
we check for by computing L4�sz�0,0�sz�L /2,0�� in a size L
system. The fast decay limits us to L�14. The results are
shown in column 4 of TABLE II. There are strong commen-
suration effects which reduce the correlation when L /2 is an
even number. However, for the other three values of L the
correlation seems to show the required scaling. Another in-
direct evidence for such fermionization is the nature of these
spin correlations in the presence of a Zeeman field
�H=−h�r�r

z, which leads to a shifted chemical potential for
one fermion specie. We find that the projected wave function
now has a ring of incommensurate correlations around �� ,��
�Figs. 3 and 4�.

Breaking SU(4) symmetry. It is natural to ask if the physi-
cal conclusions derived above are stable when enlarged
SU�4� symmetry of our model is lost. Since the gauge fluxes
are gapped, a weak perturbation cannot lead to confinement.
Also, the gapless nodal fermions are actually protected by
discrete symmetries—one needs to break lattice symmetry to
gap the nodes, as can be seen from an analysis of the fermion
bilinear terms�see Appendix B for details�. The only physical
difference that arises in the lower symmetry case is that the
chemical potential of the fermions may not be at the nodal
points. Hence the SU�4� symmetry is not essential to our
conclusions. In future,27 we will apply this analysis to real-
istic Hamiltonians with reduced symmetry and search for
liquid phases in those regimes.

TABLE III. Energy of several �variational� states for the SU�4�
model on 4�4 square lattice with periodic boundary condition.

State Energy �J�

Exact ground statea −17.35

Exact first-excited statea −16

Projected SO�6� Majorana fermion mean field −16.57

Projected SU�4� Schwinger fermion mean field −6.38

Orbital ferromagnetic, spin AFM stateb,c −14.46

Box�plaquette� ordered stateb −12

Four-sublattice SU�4� Neel stateb 0

aReference 3.
bReference 10.
cReference 23.
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FIG. 2. sz structure factor for the �-flux SO�6� projected wave
function on a 20�20 square lattice with antiperiodic boundary
conditions.
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VI. PHYSICAL REALIZATIONS

Since most natural spin-orbit Hamiltonians are not near
the SU�4�-symmetric point, it is natural to ask where we
might expect to find a model where the SU�4� symmetry is
even approximately realized. As discussed in Sec. I, cold-
atom systems in optical lattices provide some promising di-
rection for realization, if sufficient cooling of those magnetic
Hamiltonians can be achieved. In this section, we point out
that even in solid-state systems, approximate SU�4� symme-
try may be achieved, on certain high-symmetry lattices. In
particular, we point out that on the diamond lattice, if only
nearest-neighbor exchange is considered, the interactions are
close to the SU�4� point. Exchange interaction arises from a
combination of hopping and on-site interaction. The main
observation is that due to the high symmetry of the diamond
lattice, hopping matrix elements must be SU�4� symmetric.
The on-site interactions deviate from SU�4� symmetry due
to, e.g., the Hunds interaction. However, these are typically a
fraction of the overall repulsion leading to nearly SU�4�-
symmetric exchange.

For a system of d3z2−r2 and dx2−y2 orbitals on the diamond
lattice with full lattice symmetry and without spin-orbital
coupling, we first prove that the electron-hopping matrix el-
ements on nearest-neighbor bonds have SU�4� symmetry.
Denote the creation operators of the two orbitals as d1�r

† and

d2�r
† , respectively, where � is spin index and r is site index.

The hopping amplitude on bond �ij� is generically a 2�2
matrix t and the process is described by the term
�a,b,�da�i

† tabdb�j. Consider a bond from origin along the �111�
direction, the reflection x→y, y→x does not change this
bond, however the orbitals transform nontrivially
da→�b��z�abdb. Since this reflection is a physical
symmetry, the electronic Hamiltonian should be invariant
under its action, thus we get t=�z · t ·�z. Similarly consider
a threefold rotation x→y, y→z, z→x, it does not
change the �111� bond as well but the orbitals transform
as da→�b��−1 /2��z+ i��3 /2��y�abdb. Then we get
t= ��−1 /2��z− i��3 /2��y� · t · ��−1 /2��z+ i��3 /2��y�. These
two conditions on t ensure that t is proportional to identity
matrix. Thus we have proved that the hopping on �111� di-
rection preserves both orbital and spin, namely, is given by
the term t�a,�da�i

† da�j. By lattice symmetry we conclude that
all other nearest-neighbor bonds have this property. There-
fore the nearest-neighbor hoppings have SU�4� symmetry.
One should note that this proof cannot be extended to next-
nearest-neighbor and other generic hoppings.

However, the Coulomb interaction of these
orbitals generically does not have SU�4� symmetry.
The on-site Coulomb interaction is given by the
Kanamori parameters,28 U�ana↑na↓+U��a�bnanb
+J�a�b,�,�da�

† db�
† da�db�+J�a�b�da↑

† da↓
† db↓db↑+H.c.�, and ap-

proximately U=U�+2J. The SU�4� symmetry is present only
if J=0 and U=U�. We usually expect that J�U, then SU�4�
is an approximate symmetry of the Hubbard model and thus
an approximate symmetry of the derived spin-orbital ex-
change model.

This type of systems may be realized in certain A-site
spinels, where the magnetic ions form a diamond lattice and
when only the eg orbitals are active. One caveat is that the
spinel structure allows for the next-nearest-neighbor ex-
change strength to be fairly large and even comparable to the
nearest neighbor one, which may significantly break the
SU�4� symmetry. Interestingly, the experimentally discussed
“spin-orbital” liquid candidate, FeSc2S4, is an eg system on
the diamond lattice.4 However, it differs in two important
respects from the ideal model considered here. First, there is
a magnetic moment on each site, that is, Hunds coupled to
the eg fermion and second, the further neighbor exchange
interactions are believed to be substantial in this material.

Note added in proof. Our recent extensions of the pro-
jected wave function studies show that although the gapless
spin-orbital liquid state proposed is locally stable against box
order, on large ��10�10� lattices, a state with intermediate
box order modulations �with the ratio of strong to weak
bonds ~1.4� has slightly lower energy than the featureless
spin-orbital liquid state. however, since this state has a finite
amplitude on all bonds, and is not disconnected into indepen-
dent plaquettes, the Z2 topological order characterizes the
ground state in the thermodynamic limit.
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FIG. 3. �z structure factor for the �-flux SO�6� projected wave
function with average fermion filling 5/8 for one fermion specie
�other two species are still half filled�, on a 20�20 square lattice
with antiperiodic boundary conditions.
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FIG. 4. �Color online� �z structure factor when ky =��a 1D cut of
Figs. 2 and 3� for the �-flux SO�6� projected wave function with
average fermion filling p=1 /2�green solid line with symbol +� and
p=5 /8�red dash line with symbol �� for one of the three species on
a 20�20 square lattice with antiperiodic boundary conditions, both
curves are of arbitrary scale.
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APPENDIX A: PROOF OF THE EQUIVALENCE
BETWEEN PROJECTED SO(6) MAJORANA MEAN-FIELD

STATE AND PROJECTED SU(4) SCHWINGER
FERMION MEAN-FIELD STATE FOR 1D CHAIN

Consider a 4N-site chain with periodic boundary condi-
tion. The mean-field wave function for the Majorana fermion
representation is

��MF� = �
k=0

2N−1

c̃1,�2k+1��/�4N�
† �

k=0

2N−1

c̃2,�2k+1��/�4N�
†

� �
k=0

2N−1

c̃3,�2k+1��/�4N�
† �0� , �A1�

where �0� is fermion vacuum and c̃�,k is the
Fourier transform of real-space fermion operator c̃�,k
= �4N�−1/2�rc�,re

−ikr. For a physically allowed real-space
configuration mentioned above �	xi
 , 	yj
 , 	zm
�
=�i=1

N �c2xi

† c3xi

† �� j=1
N �c3yj

† c1yj

† ��m=1
N �c1zm

† c2zm

† ��0�, the overlap
with the mean-field wave function is

��	xi
,	yj
,	zm
� = �	xi
;	yj
;	zm
��MF�

= �	yj
,	zm
� · �	zm
,	xi
� · �	xi
,	yj
� ,

�A2�

where  is the 2N�2N Slater determinant for one fermion
specie with the following matrix elements �p ,q=1, . . . ,2N�:

�4N · �	xi
,	yj
�pq = � ei��2p−1�xq/4N, q � N;

ei��2p−1�yq−N/4N, N � q .
�

�A3�

Therefore the determinant is

�	xi
,	yj
� = �4N�−N�·��ixi+�jyj��
i,j

��2yj − �2xi�

� �
i�i�

��2xi − �2xi�� �
j�j�

��2yj − �2yj�� ,

�A4�

where �=ei�/�4N�. And the overlap is

��	xi
,	yj
,	zm
� = �4N�−3N�2·��ixi+�jyj+�mzm�

��
i,j

��2yj − �2xi��
j,m

��2zm − �2yj�

� �
m,i

��2xi − �2zm� �
i�i�

��2xi − �2xi��2

� �
j�j�

��2yj − �2yj��2 �
m�m�

��2zm − �2zm��2.

�A5�

The mean-field Hamiltonian for the standard Schwinger
fermion representation is

HMF,a = ��
r

�
�=1

4

a�,r
† a�,r+1 + H.c. − ��

r
�
�=1

4

a�,r
† a�,r

= ��
r

�
�=1

3

a�,r
† a�,r+1 − ��

r

a4,r�† a4,r+1� + H.c.

− ��
r

�
�=1

3

a�,r
† a�,r + ��

r

a4,r�† a4,r� , �A6�

where a� is the particle-hole conjugate of the Schwinger fer-
mion a. The particle-hole transformation on the fourth specie
is required for the following projected wave function to rep-
resent a bosonic spin-orbital wave function. The quarter-
filling mean-field wave function for the standard fermionic
representation is �we assume N is even for simplicity�

��MF�a = �
k=−N/2

N/2−1

ã1,�2k+1��/�4N�
† �

k=−N/2

N/2−1

ã2,�2k+1��/�4N�
†

� �
k=−N/2

N/2−1

ã3,�2k+1��/�4N�
† �

k=−7N/2

−N/2−1

ã4,�2k+1��/�4N��† �0�� ,

�A7�

where ã�,k is the Fourier transform of the real-space SU�4�
“Schwinger fermions” ã�,k= �4N�−1/2e−ikra�,r and �0�� is the
fermion “vacuum” that can be annihilated by a1, a2, and a3
and the particle-hole conjugate of the fourth specie a4�.

A physically allowed real-space configuration in this rep-
resentation is still labeled by three sets of N distinct numbers
	xi
, 	yj
, and 	zm
,

�	xi
,	yj
,	zm
� = �
i=1

N

a1,xi

† �
j=1

N

a2,yj

† �
m=1

N

a3,zm

†

� �
i=1

N

a4,xi

† �
j=1

N

a4,yj

† �
m=1

N

a4,zm

† �0�� . �A8�

The overlap of this configuration with the mean-field wave
function is the product of four Slater determinants,

�a�	xi
,	yj
,	zm
� = �	xi
,	yj
,	zm
��MF�a

= a�	xi
� · a�	yi
� · a�	zm
�

· a��	xi
,	yj
,	zm
� . �A9�

The N�N Slater determinants a has the following matrix
elements �p ,q=1, . . . ,N�, a�	xi
�pq= �4N�−1/2ei��2p−1−N�xq/4N.
The matrix elements of the 3N�3N Slater determinant a�
is �p ,q=1, . . . ,3N�

a��	xi
,	yj
,	zm
�pq = � ei��2p−1−7N�xq/4N, q � N

ei��2p−1−7N�yq−N/4N, N � q � 2N

ei��2p−1−7N�zq−2N/4N, 2N � q � 3N
� .

�A10�

Therefore the determinant of a is
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a�	xi
� = �4N�−N/2��1−N�·��ixi� �
i�i�

��2xi − �2xi�� .

�A11�

And the determinant of a� is

a��	xi
,	yj
,	zm
� = �4N�−3N/2��1−7N���ixi+�jyj+�mzm�

� �
i,j

��2yj − �2xi��
j,m

��2zm − �2yj�

� �
m,i

��2zm − �2xi� �
i�i�

��2xi − �2xi��

� �
j�j�

��2yj − �2yj�� �
m�m�

��2zm − �2zm�� .

�A12�

Finally the overlap between this basis state and the mean-
field wave function is �note that �8N=1�

�a�	xi
,	yj
,	zm
� = �4N�−3N�− 1�N2
��2−8N�·��ixi+�jyj+�mzm� � �

i,j
��2yj − �2xi��

j,m
��2zm − �2yj�

��
m,i

��2xi − �2zm� �
i�i�

��2xi − �2xi��2 � �
j�j�

��2yj − �2yj��2 �
m�m�

��2zm − �2zm��2

= �− 1�N2
�−8N��ixi+�jyj+�mzm���	xi
,	yj
,	zm
�

= �− 1�N2
��	xi
,	yj
,	zm
� . �A13�

Therefore these two projected wave functions for 1D chain
are identical. The crucial property utilized was that the Slater
determinants appearing are Vandermonde determinants in
one dimension. This property does not hold in higher dimen-
sions.

APPENDIX B: PROJECTIVE SYMMETRY-GROUP
ANALYSIS OF FERMION BILINEARS IN THE �-flux state

on square lattice

For the �-flux ansatz in Fig. 1 on an infinite lattice the
lattice group symmetries are realized as follows�flavor index
� omitted�:

Tx:c�x,y� → c�x+1,y�,

Ty:c�x,y� → �− 1�xc�x,y+1�,

R�/2:c�x,y� →
1 + �− 1�y − �− 1�x + �− 1�x+y

2
c�−y,x�,

my:c�x,y� → �− 1�xc�−x,y�.

Define a four-compoent field

��,k� = �c�,k�,u,c�,k�,v,c�,��,0�+k�,v,c�,��,0�+k�,u�

linearize the dispersion around the Dirac point, the low-
energy Hamiltonian becomes

� �
�,�k���1

��,k�
† �kx1 � �z + ky1 � �x���,k� ,

where � are Pauli matrices acting on the u and
v 2D space. The original fermion in real space can
be represented as c�,r�=Nsite

−1/2��k���1eik�·r�	�1+ �−1�y� · ����,k��1+ �
−1�x���,k��4�+ �1− �−1�y� · ����,k��2+ �−1�x���,k��3�
 /2, where r�
= �x ,y�. Then we have the transformation property of the �
field

Tx:��kx,ky� → �z
� 1��kx,ky�,

Ty:��kx,ky� → �x
� 1��kx,ky�,

R�/2:��kx,ky� → �1/2��1 + i�y� � �1 + i�y���−ky,kx�,

my:��kx,ky� → �x
� �x��−kx,ky�,

where �x,y,z are Pauli matrices acting on the 2D space of the
two Dirac nodes �0,0� and �� ,0�. The low-energy Hamil-
tonian is invariant under these transformations. In the follow-
ing we will prove that these symmetries prohibit mass term
and velocity anisotropy in the low-energy theory.

Consider a general mass term �†M�, where M is a 4
�4 constant nontrivial �not proportional to identity� Hermit-
ian matrix. Tx and Ty translation symmetries require that M
�1 � � with � be a 2�2 constant Hermitian matrix. my
reflection symmetry requires ���x but this violate the R�/2
rotation symmetry and is forbidden.

Consider a general velocity anisotropy term �†�kxM1
+kyM2�� with constant 4�4 matrices M1 and M2. Again Tx
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and Ty translation symmetries require that M1�2��1 � �1�2�.
my reflection symmetry requires �x�1�x=−�1 and �x�2�x

=�2, therefore �2��x. Also consider 180° rotation R�/2
2

symmetry ��kx,ky�→−�y � �y��−kx,−ky�, it requires �y�1�y =
−�1, thus �1��z. Now we have �†�Akx1 � �z+Bky1 � �x��
with constants A and B. Use the 90° rotation symmetry R�/2
we get

A�− ky�1 � �z + Bkx1 � �x = Akx1 � ��1 − i�y��z�1 + i�y��/2

+ Bky1 � ��1 − i�y��x�1 + i�y��/2

= Akx1 � �x − Bky1 � �z.

Then we have B=A and this term is just the kinetic-energy
term in the Hamiltonian.

Consider a general bilinear term �†M�kx ,ky��, where
M�kx ,ky� is a 4�4 Hermitian matrix and a homogeneous
polynomial of kx and ky. From translation symmetries it must
be of the form 1 � �m0�kx ,ky�1+m1�kx ,ky��x+m2�kx ,ky��y

+m3�kx ,ky��z�, where m0,1,2,3 are homogeneous functions of
kx and ky and are of the same order. From my reflection
symmetry,

m0�− kx,ky� = m0�kx,ky� ,

m1�− kx,ky� = m1�kx,ky� ,

m2�− kx,ky� = − m2�kx,ky� ,

m3�− kx,ky� = − m3�kx,ky� .

From R�/2 rotation symmetry,

m0�− ky,kx� = m0�kx,ky� ,

m3�− ky,kx� = − m1�kx,ky� ,

m2�− ky,kx� = m2�kx,ky� ,

m1�− kx,ky� = m3�kx,ky� .

This requires that m0 is of the form m̃0�kx
2+ky

2 ,kx
2ky

2�, m1 is
kym̃1�kx

2 ,ky
2�, m2 is kxky�kx

2−ky
2�m̃2�kx

2+ky
2 ,kx

2ky
2�, and m3 is

kxm̃1�ky
2 ,kx

2�, where m̃0, m̃1, and m̃2 are arbitrary polynomials.
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